If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y+2y^2=15
We move all terms to the left:
7y+2y^2-(15)=0
a = 2; b = 7; c = -15;
Δ = b2-4ac
Δ = 72-4·2·(-15)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*2}=\frac{-20}{4} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*2}=\frac{6}{4} =1+1/2 $
| 10u=u+45 | | m*5=5m | | -4x+6=-2x+10 | | -17s-s-1=-16s+13 | | 2/7=m/92 | | -15+7y+2y^2=0 | | -5x+2-9x-7=1 | | -10-8p=134 | | B-a=14 | | 2.3y+11=1.2y | | 3(-2x-4)=-5(-x-3)+4x | | 5x+(17x-18)=10 | | -13-8-y=32 | | 14+5h=-14-4-7h | | 12-5u=-8 | | 4(y-1)-7=3(y-1)+y | | 5x-3x+5=0 | | -6(x+1)=-3- | | 8t=12+10t | | 4=x-2-4 | | 6+7x=6x+11 | | -12-15r=20-17r | | 20-x=7x9 | | 2/3(x)=54 | | 2x+30=6x+2 | | 34=4r | | -8z-6=-10z | | 1.1x+1.2x5.4=-10 | | 2/3(x-30)=54 | | 1/2-2x+3/5=2/5 | | 8+20y=-1+2y | | 6x+7-4x+16=40 |